A tokamak is a machine that confines a plasma using magnetic fields in a donut shape that scientists call a torus. Fusion energy scientists believe that tokamaks are the leading plasma confinement concept for future fusion power plants. In a tokamak, magnetic field coils confine plasma particles to allow the plasma to achieve the conditions necessary for fusion. One set of magnetic coils generates an intense “toroidal” field, directed the long way around the torus. A central solenoid (a magnet that carries electric current) creates a second magnetic field directed along the “poloidal” direction, the short way around the torus. The two field components result in a twisted magnetic field that confines the particles in the plasma. A third set of field coils generates an outer poloidal field that shapes and positions the plasma.
The first tokamak, T-1, began operation in Russia in 1958. Subsequent advances led to the construction of the Tokamak Fusion Test Reactor at Princeton Plasma Physics Laboratory and Joint European Torus in England, both of which achieved record fusion power in the 1990s. These successes motivated 35 nations to collaborate on the superconducting ITER tokamak, which aims to explore the physics of burning plasmas.
Physicists achieve a "holy grail" of nuclear fusion — with a long road ahead
Don’t expect fusion to power your home anytime soon.
BY MOLLY GLICK
DEC. 13, 2022
Last week, the Department of Energy’s Lawrence Livermore National Laboratory made nuclear fusion history. At 1 a.m. Pacific on December 5, scientists fired the world’s most energetic lasers to recreate the process that gives stars like the Sun their sparkle — turning hydrogen into helium.
For the first time in history, this attempt to recreate nature produced surplus energy. After putting in two megajoules of energy, the reactor spit out a bit over 3 MJ, according to today’s DOE press conference. This breakthrough is more than six decades in the making and brings us a step closer to an abundant new form of clean energy.